
didunit: a unit-level multi-period

differences-in-differences estimator in R

Ransi Clarka, Jonathan N. Katzb, R. Michael Alvarezc

aCaltech, CA 91125, ransi@caltech.edu
bCaltech, CA 91125, jkatz@caltech.edu

cCaltech, CA 91125, rma@hss.caltech.edu

Abstract

This R package estimates multi-period differences-in-differences at the level
of the treated unit. This allows more flexible aggregation over estimators
whose most granular differences-in-differences estimate is at the treated time
and is useful in applications where there is considerable heterogeneity within
the treated time group or when units treated at the same time receive some-
what different treatments. For example, when units are treated with different
doses, they can be aggregated on the basis of dose to derive a dose-response
function. Regional heterogeneity, as illustrated by a cross-country study on
democratization, is another example. The software’s calls has the same syn-
tax as the did package and agrees with those estimates when panels are bal-
anced and covariates are not relevant.

Keywords: differences-in-differences, dynamic effects, dose-response,
staggered adoption

Metadata

See Table 1.

1. Motivation and significance

Differences-in-differences (DiD) estimates in a panel data setting with treat-
ment occurring at various times have been commonly derived using two-way
fixed effects. This regression recovers DiD estimates by imposing fixed effects
for the unit and time period. They have been shown to be biased in appli-
cations where the treatment effect is heterogeneous in treated time [1, 2].
Since it is impossible to know a priori if treatment effects are heterogeneous,
alternative estimation routines are needed to implement the design.

Preprint submitted to SoftwareX October 20, 2025

Nr. Code metadata description
C1 Current code version 1.1.0
C2 Permanent link to code/repository

used for this code version
https://github.com/ransiw/

didunit

C3 Permanent link to Reproducible
Capsule

C4 Legal Code License GPLv2
C5 Code versioning system used git
C6 Software code languages, tools, and

services used
R

C7 Compilation requirements, operat-
ing environments & dependencies

fastglm

C8 If available Link to developer docu-
mentation/manual

ransiw.github.io/didunit/

C9 Support email for questions ransiclark@gmail.com

Table 1: Code metadata (mandatory)

The most widely used of such routines is that of the did package built in
R [3]. The did algorithm calculates differences-in-differences for each treated
time group. However, units within a treated time group1 can be heteroge-
neous. For one, although all units are treated at the same time, they can be
treated with different doses. Moreover, units differ in their attributes and
can experience the same treatment differently.
For example, in an application where the outcome is per-capita GDP and

treatment is democratization, countries in Europe, Latin America, and Africa
may democratize the same year. If the most granular estimates are calcu-
lated at the treated time, the user cannot isolate regional heterogeneity in
treatment effects, unless all units within the treatment group are of a sin-
gle region. Our extension allows for such aggregation by calculating a more
granular estimate, i.e. at the level of the treated unit.
The algorithm operate in two major steps. First, the 2 × 2 differences-

in-differences are estimated separately for every treated unit at every time
period. Then, the first-step estimates are aggregated according to user speci-
fication. A simple aggregation averages all post-treatment effects to an over-
all effect. The first-step post-treatment effects can also be aggregated within
the treated time group, dynamic time, or calendar time.
Implementing the first-step estimates for each treated unit instead of the

1Each row in the panel dataset is a unit-time cell.

2

https://github.com/ransiw/didunit
https://github.com/ransiw/didunit
ransiw.github.io/didunit/

group has several advantages. For one, it allows aggregation across a wider
spectrum of attributes, including treatment attributes such as dosage, which
generalizes the did algorithm to non-binary treatment settings. Secondly, the
more disaggregated algorithm can help diagnose the source of outliers and
overlap violations within the treated time group. In balanced panels, the
aggregates produced from either the did or didunit algorithm are equal.2

An important difference between the two algorithms is in how they handle
sample attrition. The didunit algorithm handles unbalanced panels by en-
suring compositional balance between the pre-treatment and post-treatment.
This ensures that units that had exited the sample or their treatment sta-
tus since being observed pre-treatment does not contribute to the estimates.
This is in contrast to the did’s repeated cross section (RCS) implementation
for unbalanced panels, which assumes that were the units observed only post-
treatment were observed pre-treatment, their pre-treatment outcomes would
be similar to the pre-treatment outcomes of the units that were observed[4].
While disaggregation of the treated group to the unit-level offers advantages

with flexible aggregation, the individual treatment effects require a stronger
unit-level parallel trend assumption for causal identification, compared to
the average of the treated time group-level parallel trend assumption. That
is, a treated-time group causal estimate assumes that the average of the
treated units’ counterfactual trend is the same as average of the control units’
trend. But a unit-level causal estimate assumes that the single treated unit’s
trend is the same as the average of the control units’ trend. However, under
aggregation, the parallel trend assumption is weakened. As noted previously,
the aggregates of did and didunit agree in several cases.
Several other features of the did package are retained in didunit, includ-

ing weighting schemes for pre-treatment covariates, all aggregation schemes,
choices over control groups (between “never-treated” or “not-yet-treated”),
restrictions to the lag length for dynamic aggregation, and additional sample
weights. Extensions are in unit-level aggregations, custom aggregations, and
further restriction to control group based on a custom variable.
The inferential strategy of didunit is that of conformal inference, which is

recommended for use in synthetic controls that also produces unit-level coun-
terfactuals [5]. Conformal inference techniques provide interval estimates for
a new observation drawn from the control set. By taking the treated unit
to be the new observation, a prediction interval is produced for the unit’s

2This equality is provided that weighting is not used. Even when panels are balanced
the inverse propensity weights differ for units in the same treated-time group. Overlap
violations are also more numerous at the unit-level. This, however, has diagnostic advan-
tages.

3

counterfactual under no treatment, and then subtracted against the treated
unit’s actual outcome to arrive at an interval for the treatment effect [6].
The influence function approach of did requires a sizable treated time

group to achieve coverage (heuristically, ten or more). In cross-country ap-
plications, the treated time group sizes can be as small as one. The conformal
strategy alleviates under-coverage in small groups. However, it requires an
additional assumption that the treated unit’s counterfactual residual and
control units’ residuals are exchangeable.3 If covariates are available, the
exchangeability assumption can be relaxed to weighted exchangeability. The
algorithms for producing these intervals and their aggregates are described
in detail in the Appendix.
The didunit package is most useful when there is a high level of hetero-

geneity between units, such as in cross-country studies, or cross-state studies.
However, while it accommodates unbalanced panels, it cannot be used in set-
tings where the unit composition changes every time period such as in the
Current Population Survey (CPS) or the American National Election Study
(ANES). Software best suited for such applications is recommended below.

2. Software description

We begin with the setup of the algorithm, and then demonstrate its core
functionalities with examples. The implementation requires a panel dataset
with each row indexed by a unit identifier and a time identifier.

2.1. Description of algorithm

Let Yi,t denote the outcome at time t for unit i. Index control units from
1, · · · , N and treated units from N + 1, · · · , N + NT . There are NT treated
units. The time index t is in 1, . . . , T . Each unit has an associated vector Gi

which records its time of treatment, and an associated vector of attributes
Xi,t. If covariates are not relevant, let Xi,t = 1. Denote the control group at
any time as Ct.
For notational simplicity, we assume a balanced panel where the data

{(Yi,t, Xi,t)} is observed for each unit i at every time t. Assume the con-
trol group is the never treated group, and that once treated always treated.
Also assume that the immediate pre-treatment time for a treated unit is
Gi − 1. All these assumptions can be relaxed.

3Consider a data generating model where Yi = αi + τDi + ϵi. For our intervals to
guarantee coverage, we must assume that the variance of the residual ϵi is the same for all
i regardless of treatment status Di, σϵ(Di = 1) = σϵ(Di = 0). Violation of this will result
in under- or over-coverage.

4

Let ∆Yi,t of a treatment unit be the outcome’s difference from the pre-
treatment outcome Yi,Gi−1. Also, let wi be the weights of the form e(Xi,Gi−1)/1−
e(Xi,Gi−1) where e(Xi,Gi−1) is the predicted probability of treatment for a unit
i based on its pre-treatment information.

2.1.1. First step

The first-step DID
2×2

estimates for the treated unit j from a doubly robust
model assumption (dr) is:

DID
2×2

j,Gj ,t
= (∆Yj,t − f̂0(Xj,Gj−1))−

∑
i∈Ct

wi(∆Yi,Gj+(t−Gj) − f̂0(Xi,Gj−1)) (1)

Here f̂0 is a shorthand for the outcome regression of ∆Yi,t on Xi,Gj−1 in
i ∈ Ct. If only an outcome regression model is assumed (reg), the algorithm
sets all wi = 0 . If only the inverse propensity score model is assumed (ipw)
set f̂0 = 0 in formula (1) above.
We use the Jackknife+/CV+ conformal inference method to produce con-

fidence intervals for the DiD
2×2

j,Gi,t
estimates (See [7] for theoretical details).

The complete algorithm for these weights are in the Appendix, as Algorithm
1. Here we describe it in brief. Having fixed a treated unit j, for every i ∈ Ct,
reestimate a new f̂

(−i)
0 without that particular i, record its new counterfac-

tual prediction as f̂
(−i)
0 , and a residual term ri = |∆Yi,t − f̂

(−i)
0 |. Produce

a 1 − α interval estimate for the counterfactual prediction by taking the α
quantile of the f̂

(−i)
0 − |ri|, and the 1 − α quantile of f̂

(−i)
0 + |ri|. To get

the interval estimate for DiD2×2
j,Gj ,t

, subtract the prediction interval from the
realized ∆Yj,t. The algorithm can be sped up by increasing the size of the
holdout set, in which case it would become a CV+.

2.1.2. Second step

One type of second-step aggregation is that of all post-treatment effects of
a treated unit i (unit).

ATT (j) =
1

T −Gj + 1

T∑
t=Gj

DID
2×2

j,Gj ,t
(2)

Another option, dynamic, aggregates to the lag e := t−Gj.

ATTe =
1

NT

N+NT∑
j=N+1

DID
2×2

j,Gj ,Gj+e (3)

5

To aggregate to calendar time t (calendar), assume thatTt = {j : Gj >=
t}, and then implement the following.

ATTt =
1

|Tt|
∑
j∈Tt

DID
2×2

j,Gj ,t
(4)

Another type of aggregation is the further aggregation of objects calculated
by Eq. (2) into the treatment time group (group). Supposing that Gg is the
set of treated units for which Gj = g, and |Gg| is that set’s cardinality,
calculate the group g’s post-treatment aggregate with Eq. (5) below.

ATTg =
1

|Gg|
∑
j∈Gg

ATT (j) (5)

For overall aggregation (simple), take the set Gg to be all treated units.
If there are custom variables, replace the set Gg with all treated units that
have the same custom value. This could be those that were treated with a
particular dose.
The (1− α)-interval for unit-level aggregates in Eq. (2) is made by aggre-

gating over the counterfactual predictions f̂
(−i)
0 and residuals ri and forming

the quantiles of those aggregates. Algorithm 2 in the Appendix details this
procedure.
The interval estimates for aggregates in Eq.s (3)-(5) can be produced ei-

ther by taking a Minkowski aggregate of the intervals produced for ATT (j)

in Eq. (2) or by estimating standard errors for each ATT (j), out of f̂
(−i)
0 and

residuals ri and then aggregating these standard errors. The latter method
assumes independence across treated units j and asymptotic normality of ag-
gregates and therefore lacks the same finite sample guarantees that Algorithm
1 gives. Minkowski aggregates do not assume independence, are distribution-
free, and have better small sample coverage, but are too conservative, under
independence. Algorithm 3 details both procedures.
As remarked above, conformal intervals require an additional assumption of

exchangeability between the treated unit’s counterfactual residuals and the
control unit’s residuals. If this assumption is true, these intervals provide
better coverage when there are fewer than 10 treated units in each treated
time group. For example, in our cross-country democratization example, 32
treated-time groups have fewer than 5 democratizing countries, and only 1
group has 10 or more democratizing countries. When treated groups are
small did’s interval estimates greatly undercover.
Table 2 demonstrates this with the simulation results for data from did’s

internal simulator for different treatment time group sizes and software. The
columns record coverage for two intervals from did, and two intervals from

6

didunit (the independence assumed conformal interval and the Minkowski
interval).

Group Size did did (unif) didunit (indep) didunit (Minkow)
1 5.9 5.9 95.5 95.5
2 59.2 59.5 94.1 99.6
5 86.6 86.7 95.2 100
10 92.7 92.7 94.9 100
20 92.6 92.6 94.2 100
30 93.6 93.6 94.2 100
50 94.5 94.7 94.4 100

Table 2: Coverage of 95pc CIs (%) by size of group across software

The Appendix reports additional tables for when the exchangeability as-
sumption is violated.

2.2. Software architecture

The first-step estimates as in (1) are derived using the att it() func-
tion. The second-step of aggregation as in (2)-(4) is done with the aggite()
function. The aggite2() function can aggregate first-step estimates into
within-group dynamics.
The related functions for att it() and aggite() in the did package are

att gt() and aggte(). There is no comparable function for aggite2(). In
what follows, unless noted otherwise, the syntax and default options preserve
those of did, so that only a change in the function name is needed to compare
the results for the overlapping aggregation types group, dynamic, calendar,
and simple.
To make comparisons between the two packages easier, the mpdta dataset

in the original did package is also included in the new package. This dataset,
mpdta, is a subset of counties in the United States along with their log teen
employment rate (lemp), the year the minimum wage was raised above the
federal minimum wage (first.treat), and the log of the population (lpop).
The county is countyreal, and the time period is year.
All code examples and relevant output are reported in a separate supple-

mentary file.

2.2.1. First-step

An example of a first-step implementation for unconditional differences-in-
differences is:

7

library(didunit)

mpdta <- didunit ::mpdta

fsobj <- att_it(yname = "lemp",

gname = "first.treat",

idname = "countyreal",

tname = "year",

data = mpdta ,

panel = TRUE ,

control_group = "nevertreated")

By default, panel is set to TRUE. If the data is unbalanced, the TRUE option
forces the data to a balanced panel by removing units that are not observed in
all time periods. If this is not desired, the FALSE option should be specified.
The default control group is "nevertreated". For a dynamically updat-

ing control group, use the "notyettreated" option.
The following code stubs pertain to the use of covariates for weighting:

fsobjx <- att_it(yname = "lemp",

gname = "first.treat",

idname = "countyreal",

tname = "year",

data = mpdta ,

panel = TRUE ,

control_group = "nevertreated",

xformla = ~lpop ,

est_method = "ipw",

overlap = "trim")

The xformla inputs the pre-treatment covariates that will be used by the
weighting schemes, which are specified using the est method. This option
allows for three types of weighting of which doubly-robust ("dr") weighting
is the default. Other options for weighting are outcome regression ("reg")
and inverse propensity score weighting ("ipw"). Since both "ipw" and "dr"

require calculation of propensity scores, this maximum of the propensity score
is reported in the ipwqual field in the att it() output.
Weighting units using either "ipw" or "dr" assume overlap. To illustrate

the failure of overlap, imagine a single covariate such as county population
lpop. If all control units have a population less than that of the treated unit,
overlap is violated. With more covariates, overlap failures are less intuitive,
but more likely to occur. Such failures can cause numerical problems such as
non-convergence of the optimization algorithm and produce inflated standard
errors.
The input overlap specifies how overlap failure is dealt with when using

either "dr" or "ipw". The default option is to remove ("trim") first-step

8

estimates that do not have sufficient overlap4. The use of "trim" drops the
estimate before aggregation, but the estimated value is recorded in the field
attcalc in att it()’s output. Users who do not wish to remove estimates
with overlap failures can use the option "retain". The related att gt() of
the did package does not accept the overlap input. Its default is to "trim"

if panel is set to TRUE.
Users who need to view the results in tabular form can apply the

attit table() function to the output of att it(). This function can also
be applied to objects produced by did’s att gt().
Interval estimates are produced by the Jackknife+ algorithm, where the

holdout set is one unit. To speed up the algorithm the size of the holdout
set can be increased using the conformal split parameter. If weighted
conformal intervals are preferred, set weighted conformal to TRUE.

2.2.2. Second-step

The function aggite() aggregates these first-step post-treatment effects
within "unit", "group", "calendar" time, or a custom variable (more de-
tails below). Another useful aggregation is one on "dynamic" time, which
can be used for pre-treatment placebo testing.
Following the previous example, a treated time group aggregation is:

ssgroup <- aggite(fsobj , type="group", na.rm = TRUE)

The default for na.rm input is FALSE. If the panel is unbalanced, this default
option will error. The error informs the user that some first-step estimates
could not be calculated. In a balanced panel, this could happen if overlap
failures are trimmed. Setting na.rm=TRUE overrides this error message.
To see these sub-aggregation results in tabular form, feed the output of

aggite() through the aggite table() function. This function also works
for output from aggte() in the original package.
Overall results and confidence intervals can be obtained by the call;

ssgroup$overall.att
ssgroup$overall.lci
ssgroup$overall.uci

For aggregates the default intervals assume independence. Setting indep

to FALSE recovers the Minkowski aggregate of the intervals.

2.3. Additional functionalities of didunit

The first extension to did is aggregation on a custom variable. This variable
must be specified in the att it() call under customnames. Multiple variables

4Specifically, if the maximum propensity score from a logit model exceeds 0.999.

9

can be specified. We illustrate this using a built-in simulator.

simdata <- sim_data(dosage = rep(c(1,2),each =5))

The above code stub produces a dataset with 30 units, 5 of which are
treated at time period 10, another 5 treated at time period 15, and the rest
never treated. The input dosage in the simulator varies the dose received
by the treated units. Units treated in the same group can receive one or two
doses.
To implement the first step, run the following;

attobject <- att_it(yname = "y",

gname = "treatg",

idname = "unit",

tname = "time",

data = simdata ,

customnames = "dosage")

In a second step, a dose-response function can be recovered with;

agtobject = aggite(attobject ,type="dosage")

Any variable can be used for aggregation as long as the variable is speci-
fied in the initial att it call under customnames. The same variables that
are used within the xformla can also be specified there. However, custom
aggregation variables cannot vary over time. Relatedly, a user can specify
a cohort, which keeps comparisons within a specified sub-group, such as a
regions, or an age-group.
The second functionality is aggregation across more than one dimension.

The user can aggregate to “group-dynamic” or “custom-dynamic”. Contin-
uing with the simulated example:

agtobject2 = aggite2(attobject ,

type="dosage",

type2="dynamic")

This type of aggregation is useful if dynamic effects markedly differ based
on dosage, or another custom variable of interest.

3. Illustrative example with countries as units

The differences between the two packages are more apparent with small
sample sizes, such as in cross-country studies. We illustrate these differences
with application to data in [8], where treatment is democratization, and the
outcome of interest is gross domestic product per capita. When treated units
are countries, there is considerable heterogeneity among the units. Countries

10

differ in population size, territorial extent, and regions. So, heterogeneous
effects within the treatment time group are of interest.
Countries can also suddenly enter and leave the sample, as territorial ex-

tents change due to conflict, treaties, or independence from colonial rule.
So, it is necessary to ensure that the recovered effects are not an artifact of
compositional changes between the baseline and the post-treatment period.
Moreover, treatment time groups based on the year of democratization are
generally very small (11 groups have only one democratizing country) and
inferential methods such as in did can undercover for small groups, as our
simulation exercise demonstrates.
The example dataset for the exercise is included in the package as demgdp.

It is derived from the replication material for [8], which analyzed the effect
of democratization on growth in a panel of countries from 1960 to 2010.
The data is an annual cross-country panel for gross domestic product per

capita (gdppercapitaconstant2000us). The variable YearFirstDemocracy
is the first year that a country is observed as a democracy since 1960. The
algorithm eliminates countries that democratized before 1960 since their pre-
democratic outcome (Yi,g−1 in Eq (1)) precedes the sample’s start in 1960. We
pre-process the data as follows to accommodate the non-reversal of treatment
assumption in the algorithm:

demgdp <- didunit :: demgdp

demgdp[is.na(demgdp$YearFirstDemocracy),"
YearFirstDemocracy"] <- 0

demgdp <- demgdp[demgdp$breakdown ==0,]
demgdp$wbnum <- as.numeric(as.factor(demgdp$wbcode))

There is considerable regional heterogeneity even among countries that
democratize in the same year.

unique(demgdp[,c("wbcode","regionnum","

YearFirstDemocracy")])

Eleven countries democratize in 1993. These are Cambodia, Central African
Republic, Czech Republic, Lesotho, Lithuania, Latvia, Madagascar, Mongo-
lia, Paraguay, Russia, and the Slovak Republic. Cambodia appears in the
data for the first time in 1993, which did includes in the 1993 group. In con-
trast, the didunit algorithm would drop Cambodia since it was not observed
before 1993 and only consider the 10 remaining democracies.
The following code stub combines the first and second step estimates to

get treated time group-level aggregates:

out_it <- att_it(yname =

"gdppercapitaconstant2000us",

11

gname = "YearFirstDemocracy",

idname = "wbnum",

tname = "year",

customnames = "regionnum",

xformla = ~1,

data = demgdp ,

panel = FALSE ,

control_group = "notyettreated")

group_effects_it <- aggite(out_it,

type ="group",

na.rm = TRUE)

Swapping out the did::att gt for att it and removing the customnames
gives the results produced from the did algorithm. We compare the overall
effects and the 1970 group effects to demonstrate the consequential difference.
The overall effect produced by didunit is -46.1. The overall effect from

the did package is 756.9. Since we do not use covariates in the call (xformla
= 1), the differences in these estimates come from how compositional bal-
ance is imposed in didunit. The supplementary file demonstrates that once
the panels are balanced (i.e. when panel = TRUE) both packages give the
same group aggregates for Eq. (5) and the same overall estimate for simple
(810.8), but drops a number of groups while balancing.
To diagnose the source of these large discrepancies, we compare the outputs

of didunit::aggite and did::aggte. The largest discrepancy is in the
group of countries that democratized in 1970 (-1720.5 (didunit) vs 8795.2
did). There are 5 countries in this group: West Germany, Fiji, Ghana,
Ireland, and Malta. Of these, only Ghana is observed in 1969, the year
that pre-treatment information is drawn from. All other countries first enter
the sample in 1970. The didunit algorithm only considers Ghana in the
1970 group and eliminates all other countries due to lack of pre-treatment
information. This applies to the control group as well, where two countries
are eliminated for the lack of pre-treatment information.
Lastly, we estimate the regional treatment effect. Country-level ATTs

are weighted uniformly unless a sample weighting is specified in the call
for att it().

region_effects_it <- aggite(out_it ,

type ="regionnum",

na.rm = TRUE)

The figure shows the results (in dark green) with their confidence intervals.
The post-treatment DiD2×2

i,g,t’s (in light-green) are aligned with the relevant
i’s region.

12

Growth effects are different across regions. Industrialized countries (“INL”)
experienced faster growth on average than the control group, while Africa
(“AFR”) experienced slower growth than the contemporary control group.
For all other regions, the effect is ambiguous.

4. Related software

Other R packages that implement multi-period difference-in-difference esti-
mators are did multiplegt based on [9], etwfe package based on [10], and
fixest::sunab based on [11]. None of the above packages calculate effects at
the unit-level. did multiplegt handles non-binary treatments. The package
didimputation based on [12] calculates effects at the unit-level but does not
output these estimates. They control for covariates using linear regression.
The package PanelMatch based on [13] performs unit-level matching. Only
did allows for choice of control set between never-treated and not-yet-treated
units. A summary is in table 3.
The package didunit cannot handle repeated cross sections where the unit

composition changes in every time period. The did software handle these if
selection effects can be assumed to be minor. The package cdid from [14]

13

accommodates repeated cross section data where selection effects might be
more serious. The package didunit is also more computationally expensive
because more granular estimates are produced. For very large datasets, the
packages did and an even faster fastdid could more appropriate.

Estimator Dynamics Non-Binary Control set choice Matching

didunit ✓ ✓ ✓ ✓
did ✓ × ✓ ✓

did multiplegt ✓ ✓ × ×
fixest::sunab ✓ × × ×
didimputation ✓ × × ×
PanelMatch ✓ × × ✓

Table 3: Comparison of existing estimators

5. Conclusions

Alternatives to panel-data regressions for varying treatment times have
seen strong uptake. At the time of writing, the did package has been down-
loaded 153,000 times from the CRAN repository. This package extends its
functionality by allowing for:

• sub-aggregation to treatment intensity, and other time-invariant char-
acteristics of the treated units,

• sub-aggregation along more than one dimension,

• treated-unit-level diagnostic capability,

• greater flexibility with managing overlap violations.

• superior coverage when treated time groups are small.

A drawback of this algorithm is that it is more computationally demand-
ing than the did package, particularly as the number of treated units exceed
5000. It also requires a stronger treated unit level parallel trends assumption
for causal identification of the first-step estimates, although in aggregating
to second-step estimates the assumption is weakened to that level of aggre-
gation.
The package is most useful in applications where panels are highly un-

balanced and there are a few but highly heterogeneous treated units. Such
applications are commonplace in social sciences where comparisons are made
between countries, or between administrative regions within a country.

14

Acknowledgements

The authors thank the three anonymous referees who provided valuable
feedback.

15

References

[1] A. Goodman-Bacon, Difference-in-differences with variation in treat-
ment timing, Journal of econometrics 225 (2) (2021) 254–277.

[2] J. Roth, P. H. Sant’Anna, A. Bilinski, J. Poe, What’s trending in
difference-in-differences? a synthesis of the recent econometrics liter-
ature, Journal of Econometrics 235 (2) (2023) 2218–2244.

[3] B. Callaway, P. H. Sant’Anna, Difference-in-differences with multiple
time periods, Journal of econometrics 225 (2) (2021) 200–230.

[4] A. Abadie, Semiparametric difference-in-differences estimators, The re-
view of economic studies 72 (1) (2005) 1–19.

[5] M. D. Cattaneo, Y. Feng, F. Palomba, R. Titiunik, Uncertainty quantifi-
cation in synthetic controls with staggered treatment adoption, Review
of Economics and Statistics (2025) 1–46.

[6] L. Lei, E. J. Candès, Conformal inference of counterfactuals and indi-
vidual treatment effects, Journal of the Royal Statistical Society Series
B: Statistical Methodology 83 (5) (2021) 911–938.

[7] R. F. Barber, E. J. Candes, A. Ramdas, R. J. Tibshirani, Predictive
inference with the jackknife+, The Annals of Statistics 49 (1) (2021)
486–507.

[8] D. Acemoglu, S. Naidu, P. Restrepo, J. A. Robinson, Democracy does
cause growth, Journal of political economy 127 (1) (2019) 47–100.

[9] C. De Chaisemartin, X. d’Haultfoeuille, Two-way fixed effects estimators
with heterogeneous treatment effects, American economic review 110 (9)
(2020) 2964–2996.

[10] J. M. Wooldridge, Two-way fixed effects, the two-way mundlak re-
gression, and difference-in-differences estimators, Available at SSRN
3906345 (2021).

[11] L. Sun, S. Abraham, Estimating dynamic treatment effects in event
studies with heterogeneous treatment effects, Journal of econometrics
225 (2) (2021) 175–199.

[12] K. Borusyak, X. Jaravel, J. Spiess, Revisiting event-study designs: ro-
bust and efficient estimation, Review of Economic Studies (2024) 3253–
3285.

16

[13] K. Imai, I. S. Kim, E. H. Wang, Matching methods for causal infer-
ence with time-series cross-sectional data, American Journal of Political
Science 67 (3) (2023) 587–605.

[14] C. Bellégo, D. Benatia, V. Dortet-Bernadet, The chained difference-in-
differences, Journal of Econometrics 248 (2025) 105783.

17

6. Appendix

Algorithm 1: CV+/Jacknife+ Prediction Interval (two-sided, level
1− α)

1. Inputs: Data {(Xi, Di,∆Yi,t)}N+1
i=1 , total miscoverage α ∈ (0, 1), num-

ber of folds K ≥ 2, and a black-box regressor f(·). This is for any
arbitary t, which is suppressed in the rest of algorithm.

2. Calculation of effect DID
2×2

N+1,G
N+1

,t for unit N + 1 at time t:

a Calculate a propensity score ê(Xi) using a logistic regression of

Di,t on Xi. If Di,t = 1, set wi to be 1. If Di,t = 0, wi =
ê(Xi)

1−ê(Xi)
.

b Calculate an outcome regression f̂0 on ∆Yi,t andXi for allDi,t = 0.
c Now calculate DID

2×2

N+1,G
N+1

,t as in Eq.(1).5

3. Calculation of conformal interval for DID
2×2

N+1,G
N+1

,t :

3.1 Partition the untreated units 1, · · · , N intoK disjoint folds F1, . . . , FK .
For each i, ki is the fold it is left out of. Then for each fold
k = 1, . . . , K:
i. Repeat 2a-2c on all but fold k, obtaining f

(−k)
0 .

ii. For each i′ ∈ Fk, compute the out-of-fold prediction for the
treated unit’s X

N+1
,

f̂
(−ki)
0 (X

N+1
)

and out-of-fold residual

r(ki) = Yi′ − f̂
(−ki)
0 (Xi).

3.2 Candidate bounds at treated unit’s X
N+1

, for each i = 1, · · · , N
at each i’s holdout set ki,

Li(XN+1
) = f̂

(−ki)
0 (X

N+1
)−|r(ki)|, Ui(XN+1

) = f̂
(−ki)
0 (X

N+1
)+|r(ki)|

3.3 Take interval across these bounds,

L(X
N+1

) = Qα

(
{Li(XN+1

)}Ni=1

)
, U(X

N+1
) = Q1−α

(
{Ui(XN+1

)}Ni=1

)
.

3.4 Take the 1− α conformal interval for DID
2×2

N+1,G
N+1

,t to be

(∆Y
N+1

− U(X
N+1

),∆Y
N+1

− L(X
N+1

))

5If the estimation method is set to inverse propensity weighting only, f̂0 = 0. If the
estimation method is set to outcome regression only, set wi = 0.

18

Algorithm 2: Aggregation of intervals for a single treated unit
across time (two-sided, level 1− α)

1. Inputs: The counterfactual predictions for each post-treatment time
period {{f̂ (−ki)

0 [t] (X
N+1

)}Ni=1}t, and the residuals {{r(ki)[t] }Ni=1}t. The post-
treatment periods are t = G

N+1
, · · · , T .

2. Calculation of estimate ATT (N +1): The estimate is the overtime
mean for a treated unit.6

ATT (N + 1) =
1

T −G
N+1

+ 1

T∑
t=Gj

DID
2×2

N+1,G
N+1

,t

3. Calculation of the conformal interval:

3.1 Take the across time means for f̂
(−ki)
0 [t] (X

N+1
) and r[t]

f̃0(XN+1
) =

1

T −G
N+1

+ 1

T∑
t=G

N+1

f̂
(−ki)
0 [t] (X

N+1
)

r̃(ki)(X
N+1

) =
1

T −G
N+1

+ 1

T∑
t=G

N+1

r
(ki)
[t] (X

N+1
)

3.2 Candidate bounds at treated unit’s X
N+1

, for each i = 1, · · · , N
at each i’s holdout set ki,

Li(XN+1
) = f̃ (−ki)(X

N+1
)−|r̃(ki)|, Ui(XN+1

) = f̃ (−ki)(X
N+1

)+|r̃(ki)|

3.3 Take interval across these bounds,

L(X
N+1

) = Qα

(
{Li(XN+1

)}Ni=1

)
, U(X

N+1
) = Q1−α

(
{Ui(XN+1

)}Ni=1

)
.

3.4 Take the 1− α conformal interval to be

(∆Y
N+1

− U(X
N+1

),∆Y
N+1

− L(X
N+1

))

where

∆Y
N+1

=
1

T −G
N+1

+ 1

T∑
t=G

N+1

∆YN+1,t

6Weighted means can be used, but is not indicated here to keep notation simple.

19

Algorithm 3: Aggregation of intervals for a several treated unit
across time (two-sided, level 1− α)

1. Inputs: The counterfactual predictions for each post-treatment time
period j = N+1, · · · , N+NT {{f̃ (−ki)

[t] (Xj)}Ni=1}j the residuals {{r̃
(ki)
[t] }Ni=1}j

and total miscoverage α ∈ (0, 1),

2. Calculation of estimate ATTg: The estimate is the aggregate ATT
for the set of units treated at time g, Gg.

ATTg =
1

|Gg|
∑
j∈Gg

ATT (j)

3. Calculation of interval estimate: Minkowski mean

3.1 Calculate the 1−α/|Gg| conformal interval as in Algorithm 1 and
2.

3.2 Take the Minkowski mean of these confidence intervals,

|Gg|−1
∑
j

(
∆Yj − U(Xj),∆Yj − L(Xj)

)
4. Calculation of interval estimate: Assuming independence

4.1 Take standard errors of each j = N + 1, · · · , N + NT associated
f̃
(−ki)
[t] (Xj) and r̃

(ki)
[t] as σf

j and σr
j , respectively.

4.2 Calculate a normal approximated confidence interval where cα/2
is the critical value and σ∗ is the associated

σ∗ = |Gg|−1
(∑

j∈Gg

(σf
j + σr

j)
2
)1/2

4.3

ATTg − cα/2 ∗ σ∗, ATTg + cα/2 ∗ σ∗

20

Simulation results for when the σϵ(Di = 1) = σϵ(Di = 0)

Imposing a data generating process where outcomes are generated based
on

Yi,t = αi + τDi,t + ϵi,t

where Di,t is the treatment status and τ is the treatment effect, and αi is
a unit-level mean. The perturbation ϵi,t are distributed with mean zero and
standard deviation σϵ.

We assume the perturbations the ϵi,t do not differ in mean or variance based
on treatment status. Under this assumption, conformal intervals achieve
finite sample coverage of 1−α. Table 1 of the main text, reports the coverage
rates from the simulation exercise where σϵ = 1. The table is reproduced here
for ease of reference.

Group Size did did (unif) didunit (indep) didunit (Minkow)
1 5.9 5.9 95.5 95.5
2 59.2 59.5 94.1 99.6
5 86.6 86.7 95.2 100
10 92.7 92.7 94.9 100
20 92.6 92.6 94.2 100
30 93.6 93.6 94.2 100
50 94.5 94.7 94.4 100

Table 4: Coverage of 95pc CIs (%) by size of group across software

The average lengths of these intervals are in the table.

Group Size did did (unif) didunit (indep) didunit (Minkow)
1 0.28 0.29 7.81 7.70
2 3.15 5.63 5.53 9.51
5 3.31 3.33 3.49 12.39
10 2.46 2.47 2.47 15.04
20 1.78 1.79 1.75 17.97
30 1.46 1.47 1.43 18.03
50 1.15 1.16 1.11 21.98

Table 5: Length of 95pc CIs by size of group across software

21

Simulation results for when the σϵ(Di = 1) > σϵ(Di = 0)

If the pertubations differ in variance such that σϵ(Di = 1) = 1 but σϵ(Di =
0) = 0.5, coverage will be poor for conformal intervals in didunit. The
coverage tables and lengths of confidence intervals under a simulation are in
the following tables.

Group Size did did (unif) didunit (indep) didunit (Minkow)
1 1.3 1.3 66.3 66.1
2 54.1 58.5 66.5 87.6
5 86.5 86.7 66.4 99.8
10 91.1 91.1 66 100
20 94 94.6 67.9 100
30 95.1 95.1 69.5 100
50 95.9 96.5 67.6 100

Table 6: Coverage of 95pc CIs (%) by size of group across software

The average lengths of these intervals are in the next table.

Group Size did did (unif) didunit (indep) didunit (Minkow)
1 0.09 0.09 2.77 2.77
2 2.41 6.19 1.96 3.16
5 2.39 2.42 1.24 3.62
10 1.73 1.73 0.88 3.92
20 1.23 1.24 0.62 4.26
30 1.01 1.01 0.51 4.48
50 0.78 0.79 0.39 4.47

Table 7: Length of 95pc CIs by size of group across software

22

Simulation results for when the σϵ(Di = 1) < σϵ(Di = 0)

If the pertubations differ in variance such that σϵ(Di = 1) = 0.5 but
σϵ(Di = 0) = 1, conformal intervals in didunit will still achieve coverage
but will be inefficient. The coverage tables and lengths of confidence intervals
under a simulation are,

Group Size did did (unif) didunit (indep) didunit (Minkow)
1 8 8 100 100
2 57.8 59.5 100 100
5 87.2 87.6 100 100
10 91.5 91.3 100 100
20 94.5 94.6 100 100
30 95.1 95.1 100 100
50 96 96.2 100 100

Table 8: Coverage of 95pc CIs (%) by size of group across software

The average lengths of these intervals are,

Group Size did did (unif) didunit (indep) didunit (Minkow)
1 0.17 0.18 5.54 5.54
2 1.23 1.60 3.92 6.33
5 1.20 1.20 2.48 7.23
10 0.88 0.88 1.75 7.84
20 0.64 0.64 1.24 8.53
30 0.53 0.53 1.01 8.95
50 0.43 0.43 0.78 8.95

Table 9: Length of 95pc CIs by size of group across software

23

	Motivation and significance
	Software description
	Description of algorithm
	First step
	Second step

	Software architecture
	First-step
	Second-step

	Additional functionalities of didunit

	Illustrative example with countries as units
	Related software
	Conclusions
	Appendix

