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Abstract

Political scientists empirically studying the short and long term impacts of democratization
are constrained to observational cross-country data to make their inferences. To do so, they
rely upon outcomes that can be measured across countries and time. However, overtime
many of these variables reach their natural limits and outcomes of democracies and non-
democracies converge. Sometimes, such as with school enrollment rates, the bounds are
apparent. Yet at other times, such as with infant mortality rates, the outcomes never reach
zero but can remain close to zero. Near these saturation points, the units behave as if
they are resistant to the event’s impact, inducing a heterogeneity in treatment effect that
depends on the baseline. Indiscriminately aggregating these dynamic treatment effects into
one overall effect will bias discovered treatment effects, and increase its variance. Under
saturation, designs such as the differences-in-differences violate the essential parallel trends
assumption causing long-term dynamic estimates to attenuate and even change sign. Our
recommendation is to perform either baseline-weighted or baseline-matched differences-in-
differences or the original synthetic control. A modular estimator we suggest helps diagnose
saturation by reporting treatment effects conditional on their baseline. We use data from
several studies to show how saturation can lead researchers to incorrectly conclude that

democratization had an adverse impact on primary education enrollment and child mortality.

1 Introduction

The effects of democratic transition have always been of interest to political economists.

Theoretical models suggest that democracies tend to invest more in public services than



autocracies as a way of “paying” off median voters (Acemoglu and Robinson 2006). But
testing democracy theories empirically is challenging due to the small sample size 1. Another
challenge is measuring outcomes so that are comparable across space and time. The common
approach is to analyze rates or indices that account for differences in population or territory.
However, rates and indices are prone to saturation. For example, education enrolment can
reach a 100 percent and childhood mortality rates can reach as low as 0. Childhood mortality
is never zero but can be close to zero.

To understand the particular challenge of analyzing saturated data, consider a study
done on a sample of teenagers where the treatment is a nutritional supplement and the
measured outcome is height. Teenagers in the study are observed for a 10 year period after
the treatment. Suppose that poor randomization results in the treated group being made of
more late teens than the control group. Since late teens are generally past their growth spurts
they are unlikely to change in height under any treatment status. In contrast, the control
group made mostly of early teens will see large increases in height under any treatment
status. A differences-in-mean comparison between these two groups will over-estimate the
treatment effect, because late teens are taller than early teens. A differences-in-differences
comparison will however underestimate the treatment effect on height because the early teens
in the control group will grow in height faster than the late teens in the treatment group
despite not receiving treatment. Unless the treatment increases treatment group heights by
more than the average baseline difference in the two groups, a naive differences-in-differences
will recover a negative estimate by the end of the 10-year period.

Many cross-country comparisons of data have these exact same forces impinging upon
them. Many early democratizers such as the United States and Canada had high rates of
school enrollment at time of democratization. So a differences-in-mean analysis is likely
to overestimate the effect of democratization. But a differences-in-differences analysis will
underestimate the effect of democratization because net school enrollments cannot grow
beyond 100 percent. The effect of saturation under a differences-in-differences design can
range from an attenuated treatment effect to recovering a wrong sign. For example we find
that the naive differences-in-differences estimate calculated for Canada’s primary enrollment
in 2010 is -20. This is not because Canada’s primary enrollment dropped 20 points, in fact,
it was at a 100 percent. Rather, the average non-democracy grew its enrollment rate by 20
points because they started with a lower baseline.

Similar sign flips occur with childhood mortality. A case in point is the differences-
in-differences estimate for the effect of child mortality due to democratization in Spain,

which was found to be 40, implying that child mortality increased under Spanish democracy.

!Samples usually consist of about a 100 countries allowing for missingness



Such large unexpected positive or negative effects should not be interpreted as an effect of
democracy because it is a failure in the experimental design rather than a feature of the
treatment.

In the language of the differences-in-differences, saturation is a parallel trends violation.
Such violations are prohibitive to identification unless a conditioning variable can predict
when the violations occur and restrict the control group to be comparable to the treatment
group. Harking back to the hypothetical nutritional study, one remedy for the bad random-
ization is to use the subject’s age as a conditioning variable. If late teens are more numerous
in the treatment group, then a weighting would increase the importance of late teens in the
control group. If, however, there are only late teens in the treatment group and only early
teens in the control group, there is perfect separation and therefore causal effects are not
identified.

Analogously, in our setting, a predictor of saturation is the baseline (pre-treatment)
outcome. Countries that have high levels of primary enrollment at democratisation are
likely to reach full enrollment faster than those that have low levels. Similarly for countries
with low levels of childhood mortality. Baseline outcomes can be used either to restrict
the control set of non-democracies in the differences-in-differences to be within a coarsened
outcome range of that of the democratizing country (coarsened exact matching). Or the
baseline can be used to weight outcomes in the control set so that outcomes that are closest
to the democracy’s is weighted higher (inverse propensity score weighting) 2.

Another guard against saturation effects in our hypothetical study is to restrict dynamic
estimates to shorter lengths. Since saturation biases usually arise because the outcomes of
the two comparisons groups are converging but the control group is doing so faster, biases
worsen in long term dynamic estimates. Therefore, the usual practice in cross-country studies
of reporting a single overall average all dynamic effects, may be too optimistic for saturated
data. Restricting aggregation to shorter time spans can protect against the worse impacts
of saturation effects, although we cannot necessarily be rid of them.

A classical solution to the problem of restricted outcomes is to use a Tobit correction
within a regression framework. Several peculiarities of the cross-country setting make this
inadequate. For one, we generally do not have a known upper or lower bound. Childhood
mortality is never zero, but remain close to zero in advanced countries. A bound of zero
in a Tobit correction is as good as no correction. The second problem is that regressions

(even two-way fixed effects) do not recover differences-in-differences estimates even under

2Tt is quite common for there to be no control units that are of comparable baseline for a treated unit,
mostly for early democratizers and late democratizers. In such instances, coarsened exact matching com-
pletely removes these comparisons. However, inverse propensity score weighting can still produce an estimate,
though the standard errors will be high.



non-saturated conditions if the treatment occurs at varying times (such is the case in de-
mocratization). Applying corrections such as Tobit to a regression can compound these
many problems. Thirdly, regressions do not lend themselves easily to diagnostics. We can-
not easily pull out the differences-in-differences estimate that relates to country A. Lastly,
regressions will aggregate these component differences-in-differences estimates regardless of
whether their comparison set of non-democracies have overlap or not.

A class of estimators that have recently being popularized as heterogeneity robust panel
estimators seek to recover differences-in-differences in panel settings even when treatment
occurs at varying times.> We follow the general multi-step architecture of many such esti-
mators in this class, but adapt these to produce differences-in-differences estimates for each
democracy instead of for the entire group of democracies that transition together.

In the next section, we demonstrate how ignoring saturation can result in contradic-
tory estimates for seemingly correlated outcomes such as primary and secondary education
enrollment. Estimates produced by both the two-way fixed effects regressions and the hetero-
geneity robust differences-in-differences estimator of Callaway and Sant’Anna (2021) produce
effects that point in different directions for primary and secondary education, when advance-
ment in one type of education should generally predict the advancement in the other type of
education. Having demonstrated these puzzling results, we turn to a more formal descrip-
tion of the type of parallel trends violation that is perpetrated by saturation problems in
Section 3. In the same section, we show why conditioning on baseline is a solution, and how
aggregation to shorter spans can guard against the worst effects if conditioning fails due to
a lack of baseline-comparable non-democracies.

Section 4 applies our corrections to real data. We find that once saturation problems are
accounted for, democratization had a positively signed effect on education enrolment and a
negatively signed effect on child mortality. These findings also explain the null effects for
primary education enrollment under democratization discovered by Paglayan (2021), and
the null effects for childhood mortality discovered by Ross (2006) and Ramos, Flores, and
Ross (2020).

2 An education enrollment puzzle

The Figure 2.1 plots the differences-in-differences estimates for primary, secondary, and
tertiary school enrollment rates (columns) implied by different democratization indicators

(rows). The enrollment rates come from the data in J. Lee and H. Lee (2016). The sample

3The specific heterogeneity they are robust to is that of differences in treatment effects based on time of
treatment.



of countries do not change across the types of enrollment. The top estimate in green circle
are the estimates obtained from a two-way fixed effects regression (TWFE), and the bottom
estimate from the heterogeneity-robust panel estimator of Callaway and Sant’Anna (2021)
(NewDID).

Figure 2.1: Estimates of the democratization effect on net school enrollment rates
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Several peculiarities are of note here. First, the two-way fixed effects regressions recover
positively signed estimates for primary enrollment under all democratization indicators, but
negative effects for tertiary education under all democratization indicators, and negative
effects for secondary education for some democratization indicators. Seemingly, male and
female suffrage expansion seems to have promoted primary education expansion, but led
to either a stagnation (compared to the other non-democracies) or explicit downsizing of
secondary and tertiary.

The analogous estimates produced by the differences-in-differences algorithm in Callaway
and Sant’Anna (2021) (under label NewDID) are reverse of the estimates from the two-way
fixed effects regression. The estimates for primary education turn out negative with some
estimates as large as -18.3. But the estimates for secondary education turn out positive and

as high as 27.7. Tertiary education is similar to secondary education.



These differences do not arise from changes in sample size across the type of education
enrollments. So any differences must be methodological. There are two puzzles here. First
is why does the heterogeneity robust differences-in-differences estimates completely reverse
the sign of the two-way fixed effects estimates. The second puzzle is why do the signs
between primary enrollment and secondary enrollment, and primary enrollment and tertiary
enrollment differ.

To answer this, we start with setting down the imagined data-generating process. Denote
the observed outcome of country 7 at time ¢ be Y;;, where Y is either the primary, secondary,
or tertiary enrollment rate. For our convenience, we normalize the first period of the sample
to be t = 1. Each ¢ has an associated treatment time denoted by ¢, so that Y;,(g) is the
outcome at time ¢ of the unit 7 treated at time g. Applied to our setting, ¢ is the year at
which the country ¢ first observed as a democracy. If the unit is never treated in the sample
period, normalize g = 0.

At each time t, all countries have a A; by which outcomes grow (or decline), regardless of
their type of government. This is the secular trend.* Our target treatment effect is denoted,
B(g,1). This treatment effect can depend on g and the time since treatment [, 5(g,[).

Putting all these notational elements together, we can now explicitly state the data

generating process as,

t
Yii(g) =Yi1 + Z As+ B(g,1) * L0 & t>gy + € (1)
s=2

Supposing our interest is in a  that is the summary of all such £(g,[)’s. Notationally,
g l

where w(g,l) is some weighting scheme that add to 1 over all ¢g’s and I’s, so that f is
some weighted mean of component estimates.

A two-way fixed effects estimator recovers this § by running the following regression on
the data,

Yie=c;+ o+ B* g0 g 29y + €in (3)

This specification assumes that the treatment effect is constant across treatment time, so

that 5(g,1) = § for all g and for all [. Although it is not apparent, the two-way fixed effects

4Sometimes also known as the common trend. The assumption that these A’s are same in the treatment
and control group is the parallel trends assumption.



calculates sub-estimates [3(g,l) and weights then using its own internal weighting scheme
w(g, ).

One criticism of two-way fixed effects is that these [((g,l) are sometimes derived by
comparing late democracies (as the treated) to early democracies (as the control), when
early democracies should never enter a control set after their own g. This causes sign flips
whenever early democracies have a different treatment effect to that of the later democracies,
such that if 5(¢’,1) > B(g¢”,l) and ¢’ > ¢” for any [. These are referred to as forbidden
comparisons. A preponderance of forbidden comparisons is a partial explanation of the
negative signs observed for secondary education and tertiary education under two-way fixed
effects.

Still another criticism is that the two-way fixed effects imposes arbitrary weights w(g, ),
when aggregating these estimates. Borusyak, Jaravel, and Spiess (2021) finds that for longer
lags [ the w(g,[) can attenuate and sometimes turn negative. Although the negative weights
are usually unlikely, since we are analyzing data over several decades (sometimes, centuries)
the probability of negative weights increase in time.

The newer differences-in-differences estimators such as that of Callaway and Sant’Anna
(2021) produces estimates using a more flexible procedure, where each 5(g,[) is calculated
separately, instead of all at once as does the two-way fixed effect regression. In this way the
algorithm can specifically impose that early democracies never enter a control set. Notation-

ally, the estimate is calculated as,

Blg,1) = |Ig‘71 Z Yig+1(9) = Yig-1(9) — ’Cg+l|71 Z [Y,g+1(0) = Yjg-1(0)] (4)
i€y J€CG+1

where Z, is the set of all countries democratizing at time g, and Cy; are countries that
are not yet democracies at time g + [.

These are then aggregated similarly to Eq. 2 above where w(g,[) is always positive.
Weights will differ based on number of democracies in g, but given g, do not differ in
[. While these estimators guard against forbidden comparisons that plague two-way fixed
effects estimates, they still require that parallel trends assumptions be satisfied. That is in
the data generating process, A, should be the same regardless of democracy status.

Saturation of primary enrollment would be a violation of this assumption; early democ-
racies are generally close to full enrollment and grow more slower than their comparable
non-democracies. The negative effects these estimates recover is an artefact of this violation.
The effect of saturation is apparent when comparing the heterogeneity-robust differences-in-
differences estimates across the types of enrollment. Secondary and tertiary enrollment rates

are rarely at full enrollment even in the most developed countries. Therefore, saturation is



a minor concern as a parallel trend violation.

Saturation also explains why the two-way fixed effects estimates for primary enrollment
were positive. Saturation problems are worst among the early democracies such as the
Canada. When used as controls in a forbidden comparison, these early democracies produce
a positive differences-in-differences estimate.

Parallel trend violations are usually prohibitive to causal identification under a differences-
in-differences design. One solution to such violation is to find a conditioning variable that
predict the violations. Such as age in our hypothetical nutritional experiment. The next
section expands on the bias of saturation, and details an estimation strategy to alleviate
the bias. Since this proposed estimator is modular — operates in steps — it lends well to

saturation diagnostics.

3 Saturation in cross-country data

The Figure 3.2 demonstrates excerpts of data ripe for saturation biases. The left panel
shows Canada’s primary enrollment rate from the years 1866-2010 (in blue circles), along
with the average primary enrollment rate for all other non-democracies at each year (in
solid red line). Canada democratizes® in 1867 with a primary enrollment rate of about 80%.
Canada’s enrollment rate reaches full enrollment in 1920 and remains so until about 1940. It
is again at full enrollment by 2010. The very low enrollment figures of 1960s (70%) is due to
a missing value imputation done in UNESCO Statistical Yearbooks that J. Lee and H. Lee
(2016) sources the enrollment raw figures from.

Because Canada’s enrollment rate at democratization is higher than its contemporary
non-democracies, a differences-in-mean calculation (differences of the blue circles and red
dots) will attribute this baseline difference to the treatment effect. Differences-in-differences
designs avoid this problem, since it recenters the trajectories at their respective baselines
(at 80 for Canada and at 35 for the non-democracies). In turn, however, the design is
exposed to the risks of saturation bias. Net primary enrollment cannot grow further beyond
a 100 percent. Countries such as Canada that democratize with higher baselines are more
restricted. Countries with lower baselines are less constrained. Therefore, the differences-
in-differences estimate for Canada’s democracy would be negative from 1940 onwards. In
2010, where it again reaches full enrollment the differences-in-differences estimate is -20.
With an upward secular trend in non-democracies, once at full enrollment the differences-
in-differences estimate for Canada’s primary enrollment can only be negative.

In the right panel of Figure 3.2 is Spain’s childhood mortality rate (in blue circles) and

®That is, according to binary indicators in Boix, Miller, and Rosato (2013).



Figure 3.2: Net primary enrolment rate (Canada) and child mortality rate (Spain)
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Note: Left panel is net primary enrolment data with Canada in blue circles. Right panel is child
mortality with Spain in the blue circles. The solid red lines in each panel demonstrate the yearly
average of the non-democracies each year. The grey dots are trajectories that the yearly averages are
calculated from. The dashed vertical line denotes the year of democratization of Canada and Spain
respectively.

that of contemporary non-democracies (in solid red line). In 1977, Spain reemerges as a
democracy after its almost 40-year Franco dictatorship. Spain’s mortality rate is much lower
than other non-democracies in 1977 at 10 deaths per 1000, and falls to 5 deaths per 1000 in
2010. But, all other non-democracies though with higher mortality rates than Spain see a
steeper drop in this time period. Here, the differences-in-differences estimates for Spain will
be positive from as early as 1970. Analogous to before, with a downward secular trend in
non-democracies, the differences-in-differences estimate for Spain’s child mortality can only
be positive.

To recap, in the case of primary enrollment the differences-in-differences estimates were
mostly negative. And in the case of child mortality differences-in-differences estimates were
mostly positive. Both imply that democratization had adverse effects on the relevant out-
comes. But the implications are not true. Rather, it is an artefact of the outcome analyzed
and the assumed experimental design, rather than a feature of democratization.

To put this more formally, consider an amendment to the previous data generating process
in Eq. 1 where the common trends A depend on the starting value Y; 1, as do the treatment
effects 3.

t

Yii(g) =Yia1 + Z Ay(Yin) + Bga(Yin) * Ligso & 29y + €i (5)

s=2



Supposing we are considering Canada in the left panel and renormalize Y; 1566 to be Y; ;.
Our new data generating process implies that the counterfactual common trends should
depend on the starting value. This is denoted by the conditioning on Y;;, Ay(Y;;) and
Bg1(Yi1). This implies that estimating Ay out of the entire control group, may induce bias.
Instead, the control group must either be restricted to those countries with a similar baseline,
or weighted in such a way that countries closer to the treated unit’s baseline receive more
importance.

Because of the small sample size and attrition®, both restriction and weighting face
practical challenges. We take these up in the next section after describing the estimation

strategy.

3.1 Our proposed estimator

Similar to many heterogeneity-robust differences-in-differences estimators, we propose a mod-
ular estimation strategy. A first-step produces component differences-in-differences indexed
by the country, and the year. A second step aggregates. We maintain an architecture similar
to that of Callaway and Sant’Anna (2021), but differ in the granularity of the first-step. That
estimator calculates its most granular first-step differences-in-differences at the level of the
set of countries that democratize together, but we do so at the level of the country, so that
each democracy has its own series of differences-in-differences estimates. This adaptation is
necessary because countries that democratize together can have different baselines. Without
separate estimates for these countries we cannot perform diagnostics.

Moreover, since countries can backslide from democracy at any time, treating all countries
in the same group, biases dynamic estimates after one of the countries in the group exits
(either the sample or becomes a non-democracy). Calculating a single estimate at the group
level precludes any aggregation to attributes that differ within the treated time group.

In what follows,the index ¢ will be a country. Years will be indexed by ¢. The year of
democratization, is encoded in g. The index [ denotes lag length, i.e. years since democra-
tization.

As before, let Y;; denote the outcome at year ¢ for country . Each country ¢ is first
observed as a democracy at year g. Under a potential outcome framework, Y;:(g) should be
meaningful for any ¢, g combination, though we mostly observe the outcomes for one g for
each 7. For ease of notation, we will assume that countries that democratize in a year g will
remain a democracy until the end of the study period, T. This is without loss of generality,

since new transitions can be recoded as new countries.

6Most attrition occurs in the control sample when non-democracies transition to democracies. Attrition
changes the composition of the sets between dynamic lags.
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The control set C, are non-democracies at time ¢.” Countries that never transition to
democracies have g normalized to 0. While a number of potential treatment effects can be
calculated as Y;;(g) —Y;+(¢’) for any pair of g, ¢’, we restrict ¢’ to be the set {¢’ : 0 V ¢’ > g}.
That is, the control set is either made of countries that never democratize by the end of the
sample or countries that are yet to democratize. Therefore, g in Y;;(g) denotes the true
transition time of the associated 1.

The estimator has a multi-step structure. The first step produces country-level 2 x 2
differences-in-differences estimates for each year of the sample period. These estimates are
denoted DID(i,t,g). The next step then aggregates these estimates. Aggregations can be
within the lag [, group g, or even the baseline at time of democratization. Fixing a country
1 that democratizes at g, the first-step estimates of the treatment effect on the treated ¢

calculated for all years t are of the form:

DID(i,t,9) = [Yiy = Yiga] = > wi(vi, )[Yie — Yig1] (6)
JECt

Here w; is a weighting that adds to 1. This weighting is positive for each j but can be
very small for some of them. Weighting usually requires another estimation routine before
calculating Eq. 6. The usual procedure is to estimate a propensity score using a logistic
regression on the treatment indicator D; and the baseline Y; ,_;. These inverse propensity

weights are obtained by taking a ratio of the propensity score over its differences from 1.
Weighting weakens the unconditional parallel trends assumption to the weaker condi-
tional parallel trends assumption (that the trajectory of the democratizing country need not
be parallel to every non-democracy but only those that are close to some baseline covariates).
More specifically, countries in C; whose Y} ,_1 are closest to the Y; ,_; will be weighted higher

than those that are further away. The synthetic control is another weighting algorithm. ®

Baseline matching is also possible, but requires some coarsening for practical use.”.

"Two-way fixed effects regressions do not impose this restriction and admits earlier democratized countries
even when they are democracies at time ¢, a major cause of its tendency to produce flipped signs.

8The synthetic control weighting algorithm is most useful if there is a longer pre-democratic period
observable and there are no missing values in that period. Because countries enter and exit our sample at
all times, we believe the synthetic control’s sample balance is too demanding for a cross-country sample,
unless imputed. We also caution against the use of synthetic controls that involve intercept shifts or negative
weights for w;. Shifting control country trajectory’s in this way exacerbates the problem and will result in
large sign flips.

9 Another way to achieve baseline conditioning is to use coarsened matching, for example, by restricting
the set C; to units that are within some pre-specified region of the baseline covariates (Iacus, King, and
Porro 2012). Under such a method w; would have the form,

w, — _LieR,
J |Ct N Rz|
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The first-step usually produces a large number if estimates. For a sample with 20 democ-
racies observed over a century, 2000 such estimates will be produced. In the second-step
these estimates are aggregated to summary statistics. Aggregation can be within the coun-
try ¢ level, democratization year g level, or other custom aggregation such as the baseline of
the democratizing country. The type of aggregation most relevant to us is that of time since
democratization, or lag length [. Supposing that ; is the set of all countries that democratize

[ periods before the end of the sample, the dynamic estimate of lag length [ is,

ATT; = |L| ™ > DID(i,g,t) (7)
{(i,g,t)|i€T; and t—g=I}

The lags [ considered can also be negative. These are useful for testing for pre-treatment
parallel trend violations. However, since saturation biases set in on long-term post-democratization
estimates even when violations are not detected pre-treatment, they are a concern for post-
treatment estimates.

We may also aggregate each democracy’s post-democratization estimates into a specified

lag-length. Supposing this lag length is L, for a democracy ¢,

1
ATT (i) = ———— DID(i, g,t 8
D=7=r7 > (i.9.1 )
{(ng’t)‘t_gSL}
This can then be further aggregated to an overall average treatment effect on the treated.
Supposing that Z;, is the set of all democracies that are observed at least one period after

democratization, this overall estimate is,

ATT" = T, |71 Y | ATT* (i) (9)
=
When L is left unrestricted to be the longest period in the sample, this gives the overall
treatment effect, ATT.
Other aggregates such as aggregating to the democratizing year, or to the baseline can
be produced analogously.
Two issues warrant further discussion. One of this is what one might do if there is perfect
baseline separation between the democratizing and control countries. The second is how one

might calculate standard errors for the DiD(i, g,t) with just a single treated unit.

where R; is the region in the baseline covariate space where the unit ¢ is.
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3.1.1 Excising overlap violations

Weights w; in definition Eq. 6 require that the baseline Y; , 1(g) is “overlapped” by the
control units’ baselines (for weighting) or be within the coarsening (for matching). The
practical requirement for overlap in inverse propensity weighting is that at least one of the
control units’ baseline outcomes should be above the treated unit’s baseline, and at least one
of the control units’ baseline outcome are below the treated units’ baseline.

When this is violated, baseline matching outputs a missing value for that comparison
due to lack of controls, while the inverse propensity weights will be numerically unstable,
and particularly problematic for standard error calculation.!® Synthetic controls will also
experience similar issues because an overlap violation usually implies that the treated unit’s
pre-treatment trajectory is outside the convex hull of control set’s pre-treatment trajectory.!

One approach to overlap violation is to estimate effects only for the feasible comparison
sets. This makes our interpretation be for the limited set rather than for the entire sam-
ple. However, useful information can be gleaned by those DiD(i,g,t)’s for whom overlap
violations occur when conditioned on baseline.

When generating our results, we produce both overall estimates excising DID(i, g,t)s

with overlap violations and overall estimates without excising those.

3.1.2 Inference

Inference for DiD(i, g,t) and their second-step aggregates are done using techniques in con-
formal inference (Lei and Candeés 2021). Because the first-step estimates only have a single
treated unit, we cannot learn the treated group’s variance. However, by assuming that the
€,+'s in equation Eq. 1 and Eq. 5 share the same variance, we can produce a prediction
interval for the untreated counterfactual of Y;;(g) using the control set. This set is then
inverted against the observed Y;,(0). Algorithm 1 in the Appendix details how a jackknife+
algorithm can be used to produce these confidence intervals (Barber et al. 2021).

Briefly the algorithm operates by reestimating weights w; leaving out each j in the set

C;. For each j left out, a new counterfactual rate change for 7 is estimated, AY;(t_ 7 ),

AV = 37 wp(V4(0) = Virg—1(0))

J'€CL\j

107f all control baselines Y; ,—1(0) are above (below) Y; ;1 (g), then the control country with baseline just
below (above) Y; ,_1(g) will be given a weight of 1. This inflates standard errors, because we now have
effectively 2 units in our sample.

"The Synth package defaults to a uniform weight when the treated unit is outside the control sets
outcomes’ convex hulls.
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(=7)

and a new residual r; *’, where

r( 7 =AY, - AV

Then the counterfactual’s interval estimate is formed by taking o quantile of AYl(t_ D _

|7"Z(_j)| and the 1 — a quantile of AYift_j) + |r§_j)|. The interval estimate for DiD(i, g,t)
is obtained by inverting these interval against the treated unit’s realized outcome Y;;(g) —
Yi s—1(g). The interval estimates produced in this way have finite sample coverage guarantees
instead of the usual asymptotic coverage guarantee.

To obtain the standard errors for aggregation, statistical independence among countries
must be assumed. These intervals only have asymptotic coverage guarantees. If finite sample
coverage guarantees are needed, Minkowski means of the interval estimates for DiD(i, g, t)
can be used. However, these are always too conservative. Algorithms 2 and 3 describe how
intervals can be aggregated for the quantities describes in Eq. 8 and Eq. 9.

The assumption of exchangeability where the standard error of the residuals €;¢, o¢ is
invariant to the unit ’s treatment status (o.(¢g > 0) = o.(¢g = 0)) is stronger than that
assumed by most multi-step differences-in-differences estimators. For example, Callaway
and Sant’Anna (2021) allows for these residual variances to differ unconditionally (o.(g >
0) # o.(g = 0)). Our inferential approach under-covers if o.(¢9 > 0) > o.(¢g = 0), and
recovers a conservative interval (over-covers) if o.(g > 0) < g.(g = 0).

However, the inferential method we propose has better coverage when group (set of coun-
tries democratizing in the same year) sizes |I,| are (heuristically) smaller than 3 countries,
even if this variance equality assumption is violated. This is more often the case, because in

many sets I, is only a single democracy.

3.2 Simulation

The Appendix includes results from a simulation which compares several regression esti-
mators, the Callaway and Sant’Anna (2021) estimator and our proposed estimator under
a data generating process where outcomes are unrestricted and a data generating process
where outcomes are restricted. This latter process mimics a saturation situation such as
in left panel of Figure 3.2. For visual depiction, we identify the Callaway and Sant’Anna
(2021) estimator as did, the name of the package in R that implements that estimator. And
identify our proposed estimator as didunit, also a package in R.

The estimators compared are country fixed effects regression (unitFE), year fixed effects
regression (yearFE), two-way fixed effects regression (TWFE), two-way fixed effects esti-

mator with unit-level time trends (u-TWFE), two-way fixed effects with Tobit correction
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(TWFE Tobit), the unconditional estimates from (did), the baseline-weighted estimates of
above (did Weighted), our unit-level adaptation without baseline-weighting (didunit) and
with baseline weighting (didunit Weighted). The coarsened baseline outcome restricted
version is named (didunit Restricted).

Under restricted outcomes, TWFE, Unweighted did, Weighted did, and Unweighted
did recover the opposite sign. unitFE, yearFE, u-TWFE all recover the correct sign, but
overestimates the treatment effect. TobitTWFE recovers the true treatment effect as long
as the treatment effect is the same across all units (a strong assumption). Our proposed

estimators recover the true treatment effect under all conditions.

4 Data section

This section demonstrates how saturation manifest in real data. Arranging first-step
DiD(i, g,t)s on their pre-treatment baselines reveals tell-tale signs of saturation biases. Fol-
lowing these diagnostic demonstrations, we estimate aggregate effects.

As outcomes, we consider primary enrollment and childhood mortality. Experience tells
us that neither outcome worsened considerable under democracies. Therefore, we should not
expect large negative effects for primary enrollment or large positive effects for childhood
mortality.

For effect of democratization on primary enrollment, we use data from Acemoglu, Naidu,
et al. (2019) and Paglayan (2021). For the effect on child mortality, we use data from
Ross (2006) and Ramos, Flores, and Ross (2020). Some datasets were processed further.
Particularly, missing outcomes were imputed with past values not more than 6 years older.'?
Because our algorithm requires a binary indicator of democracy, even when the original data
exercise used a non-binary indicator of democracy, our analysis used a binary indicator.?

We also recoded the original datasets to accommodate for backsliding. Countries that
backslide for more than 5 years are re-introduced to the control set of non-democracies with
a different code. The first 5 years of these reintroduced democracies is truncated, because
these are usually times of war, or crisis. We chose to retain backsliding countries in the
sample without eliminating them entirely because even typical autocracies can have short
democracy stints.!* Countries that democratize again are introduced back in with the same

identification 7.

2Imputation helps retain sample sizes when the immediate pre-treatment outcome is missing.

13Ross (2006) uses a continuous indicators of democracy PolitylV. We are restricted to binary indicators
in our new estimator, so use the ACLP indicator of Cheibub, Gandhi, and Vreeland (2010) which we found
in the replication folder of Ross (2006).

14Cuba, for example, had a short period of democratic governance.
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4.1 Diagnosing saturation

The worst effects of saturation manifest in sign flipping, since it can lead to incorrect conclu-
sions. The component estimates DiD(i, g,t)s helps detect democracies that are most likely
sign flipping. One diagnostic exercise is to arrange DiD(i, g,t)s based on their correspond-
ing baseline outcomes Y;,_;. Closer the baseline is to a saturation point, worse are the
saturation effects.

Figure 4.3 demonstrates possible saturation biases for primary enrollment data from
1820-2010. The plotted estimates are from DiD(i, g,t)s calculated as in Eq. 6 but where no
covariates were provided for weighting. As a shorthand we call these estimates unweighted.
The higher the baseline the more negative the estimate is. For those democracies whose
baselines are close to 100, the estimates are overwhelmingly negative. Some estimated neg-
ative effects are as large as -80. On the other hand, for baselines around 15, the estimates
are overwhelmingly positive.

Figure 4.4 reports those same estimates but when Eq. 6 is calculated by weighting on the
vector of baseline outcomes. Some component DID(i,g,t)s did not have sufficient overlap
and can be numerically unstable if the underlying propensity score estimation algorithm does
not converge. Nevertheless, at most times some estimate is output. The grey crosses plot
these. In contrast to the previous Figure 4.3, the worst negative estimates are ameliorated by
the weighting. When weighting is not possible due to poor overlap, large negative estimates
are still observed. We recommend dropping these estimates when aggregating so that they
do contaminate overall treatment effects. Alternatively, as we do in the next subsection,
report aggregates with and without excising the overlap-poor estimates.

Estimates on childhood mortality data exhibit a similar pattern of violation, as in Fig-
ure 4.5. Since the lower child mortality is a better outcome, a negative estimate signifies
improvement. Countries that democratize with a baseline close to zero produce a positive-
signed effect on child mortality. Baseline-weighting deals with these positively biased esti-
mates to a large extent. Compared to the previous example on primary enrollment much

fewer DiD(i, g,t)s are dropped due to overlap violations.

16



Figure 4.3: Component estimates for effect of democratization on primary enrollment
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Note: These are the unweighted DiD first-step estimates DID(i,g,t) as in Eq. 6 arranged based on
the democratizing country’s baseline Y; ;1. They are termed unweighted because all control countries
are uniformly weighted. The enrollment data the estimates are based on is from J. Lee and H. Lee
(2016) and the democracy indicator is from Boix, Miller, and Rosato (2013). Negative estimates imply
an adverse effect for enrollment.
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Figure 4.4: Component estimates for effect of democratization on primary enrollment
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Note: These are the baseline weighted DiD first-step estimates DID(i, g,t) as in Eq. 6 arranged based
on the democratizing country’s baseline Y; ;1. The enrollment data the estimates are based on is from
J. Lee and H. Lee (2016) and the democracy indicator is from Boix, Miller, and Rosato (2013). Negative
estimates imply an adverse effect for enrollment. Grey crosses show estimates that had no overlap, and
should be dropped for aggregation.

Figure 4.5: Component estimates for effect of democratization on child mortality
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Note: The left panel are unweighted DiD first-step estimates as in (Eq. 6) arranged based on the
democratizing country’s baseline. The right panel are baseline-weighted counterparts of those on the
left. The greyed out dots are those that violate overlap.
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4.2 Overall estimates

Here we report the overall post-treatment effects that are recovered by our baseline-weighting
procedure and compare them to estimate obtained by two-way fixed effects regressions.
While all original papers use some version of two-way fixed effects, they differ in the
specifications they use. Since our intention here is not to verify the results of the original
papers, we use a fixed set of regressions for comparison, even when the original authors
may not have used the exact specifications.!®> These specifications are the two-way fixed
effects regression (TWFE), the unit-level time trend two-way fixed effects regression (u-
TWFE), Tobit-correction applied to two-way fixed effects (Tobit-TWFE), the unweighted
aggregate of Eq. 9 (didunit Unweighted), and the baseline-weighted aggregate (didunit

Weighted). Figure 4.6 demonstrates the above estimates recovered from the four datasets.

Figure 4.6: Overall estimates

Primary Child
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Note: Demonstrates estimates from the relevant estimator labelled on the y-axis. The baseline-weighted
version of our estimator is highlighted in gray (didunit Baseline Weighted). The bottom estimate
in the gray region does not excise individual DID(i, g,t)s the violate overlap. All baseline-weighted
estimates produced from comparison sets with sufficient overlap imply improvement of outcomes under
democratization.

The baseline-weighted aggregates (highlighted in gray) ameliorate saturation biases, if

15 Acemoglu, Naidu, et al. (2019) runs an additional two-stage least squares specification, which we do not
compare here.
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they matter. Two versions of these weighted estimates are plotted. The top estimate within
the gray region drops overlap-poor DID(i,g,t)s, and the bottom estimate retains them.
The two versions only differ substantively for the primary enrollment data (under Paglayan
(2021)). This is because the time scale there is much longer and therefore has more oppor-
tunity for saturation biases to overwhelm the aggregates. In all four datasets, the weighted
estimates imply that democratization had a positive effect on the relevant outcomes.!

Another tell-tale sign of saturation bias is a sign disagreement between the weighted and
unweighted aggregates. This is most obvious in the primary enrollment data (in Paglayan
(2021)), where the unweighted estimate is significantly negative, while the weighted estimate
is significantly positive. A similar sign disagreement occurs for primary enrollment data in
Acemoglu, Naidu, et al. (2019) and child mortality data in Ramos, Flores, and Ross (2020).
Saturation biases are slightest in the child mortality data in Ross (2006). Yet, even in this
instance they cannot be ruled out, because the weighted estimates differ.

Ironically, the two-way fixed effects and its versions are largely in sign-agreement with
the weighted didunit estimates. The only exception to this is the child mortality data in
Ross (2006) where all TWFE recover a positively signed effect. This coincidental agreement
arises partly because of the additional forbidden comparisons made by two-way fixed effects.
To recall, such a forbidden comparison would include early democracies in the control set
for late democracies. If early democracies’ primary enrollment outcomes are more likely to
saturate because they started at a high baseline, when compared to late democracies as the
resulting estimate is large and positive. These estimates cancels out the large negative effects
produced by the remaining “legal” comparisons. Similar forces are at work with mortality
data.

Despite the Tobit estimators’ robustness to censoring, its use was limited here, because
saturation occurred much earlier than the maximum (or minimum) possible value we imposed
as the censoring point. This is confirmed by Figure 4.3 and left panel of Figure 4.5. Sign
flipping occurs much before the highest (or lowest) possible value.

The estimates in the previous Figure 4.6 were aggregations to the highest possible lag
length. Since saturation biases get worse over longer observation windows, another way to
ameliorate these is to restrict the lag length in aggregation. For example, a restricted overall

estimate can be produced by aggregating only first decades’ estimates, i.e.

. Figure 4.7 demonstrates aggregations for the first six decades using the baseline weighting.

6These estimates may change if other conditioning variables are added.
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Figure 4.7: Overall estimates baseline weighted and decadal restrictions
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Note: Variably aggregates baseline-weighted component estimates DID(i,g,t). Top estimate in red
square is the aggregate after dropping overlap-poor component estimates. The bottom estimate retains
these.

For all datasets, increasing lag length does not substantively change the estimate though it
seems to increase the variance. When aggregating with overlap-poor estimates, the aggre-
gates for primary enrollment data in Paglayan (2021) show a greater tendency to sign-flip.
The results show that the methodological augmentations we propose are robust to sat-
uration problems, although we cannot guarantee that they can be completely dealt with.
The effectiveness of both weighting and restricting lag length depend on the availability of

adequate controls.
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5 Conclusion

Political scientists are no strangers to the problem of ceiling and floor effects caused by
outcomes that can saturate. Page and Shapiro (1983) describes these issues in survey ex-
periments as ceiling and floor effects. However, little attention is paid to the biases in time
series cross-country studies. We conjecture that this is because researchers generally default
to black box like estimators such as two-way fixed effects where saturation biases cannot be
easily diagnosed.

While saturation biases can be slight in cross-sectional studies, as we have demonstrated,
in long-term studies they can become the overwhelming effect. Under some conditions, these
effects can cause sign changes, leading researchers to conclude against the truth. This is not a
rare occurrence either, and exacerbates in the longer term. Some of the most widely studied
outcomes such as school enrolment and childhood mortality can exhibit these biases. The
problem is not limited to these variables. Growth rates, vote shares, and a variety of other
outcomes can be similarly saturated.

Saturation is a type of parallel trend violations. Yet can be alleviated by conditioning
on the baseline, a predictor of saturation as those with baselines close to saturation points
attain those limits quicker than countries further away. Our proposed correction produces
differences-in-differences estimates for each democratizing country, weighting on the baseline
outcome. This allows diagnostics based on each country’s baseline, and flexible aggregation
to variable lag length. Aggregation can also be done excising estimates with poor baseline
overlap. Applications of the method to real data recover treatment effects that imply that

democracy has advanced public welfare.
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6 Appendix

6.1 Algorithms for interval estimates

Algorithm 1: CV+/Jacknife+ Prediction Interval for DiD(j, g,t) (two-sided, level
1 —a)

1. Inputs: Data {(X;, D;, AY;)}X*+! total miscoverage a € (0, 1), number of folds K >

2. This is for any arbitary ¢, which is suppressed in the rest of algorithm.
2. Calculation of individual effect DID(i, g,t):

(a) Calculate a propensity score é(X;) using a logistic regression of D; on X;. If
D; =1, set w; to be 1. IfDizl,wi:Ié(ALi)

—é(Xy)”
(b) Let fo = 3 ,c0 wiAY;.

(c) Now calculate the estimate as AY; — fo-
3. Calculation of conformal interval:

(a) Partition the untreated units 1,--- , N into K disjoint folds F7,..., Fx. Then for
each fold k =1,..., K:

i. Repeat 2(a)-2(c) on all but fold &, obtaining féfk).

ii. For each i € Fj,, compute the out-of-fold prediction for the treated unit’s Xj,
fo (x;)
and out-of-fold residual
rt) =y, = fi7O(X).

(b) Candidate bounds at treated unit’s X, for each i = 1,--- , N at each i’s holdout
set k;,

F(—k; 4 _A_ki i
Li(X;) = fSR0) — /%), Ui(xg) = f5MG) + )

(c) Take interval across these bounds,

L(X;) = Qa({L:(X;)}Y,) U(X;) = Qi-a({Ui(X;) 1Y, ) -
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(d) Take the 1 — a conformal interval to be

(AY; = U(X;), AY; = L(X;))

Algorithm 2: Aggregation of intervals for a single treated unit j treated at time

g across time(two-sided, level 1 — «a)

1. Inputs: The counterfactual predictions for each post-treatment time period ¢t =
g, ,T {{fé]?;])(Xj) N} the residuals {{T[(gi) N . }+ and total miscoverage o € (0, 1),

2. Calculation of estimate ATT(j): The estimate is the overtime mean. Weighted

means can be used, but is not indicated here to keep notation clean.

T

. 1 .

ATT(j) = T-gil > DID(j,g,t)
t=g

3. Calculation of the confidence interval:

(a) Take the across time means for félfz]) (X;) and 7y

T
1
m(ki)(x ) — (ki)
AR (X) = T_gﬂgrm (X;)
(b) Candidate bounds at treated unit’s X, for each i = 1,--- , N at each i’s holdout

set k;,

Li(X;) = FORX) = F], Ui(X,) ="F(X;) + 7

(c) Take interval across these bounds,
L(X;) = Qa({Li(X)}L ), UX)) = Qo ({U(X)}L,) -

(d) Take the 1 — a conformal interval to be
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Algorithm 3: Aggregation of intervals for a several treated unit across time(two-
sided, level 1 — «)

1. Inputs: The counterfactual predictions for each post-treatment time period for each
treated unit j = Ny, -+, Np {{fﬁ)(X]) N.}; the residuals {{f[(t?i)}i]il}j and total

miscoverage a € (0, 1),

2. Calculation of estimate ATT: The estimate is the overtime mean. Weighted means

can be used, but is not indicated here to keep notation clean.

1 N,
ATT = ———  N" ATT(
NT—N1+1]§1 ()

3. Calculation of interval estimate: Minkowski mean

(a) Calculate the 1 —a/T conformal interval using the same procedures (a)-(d) above

as previous algorithm.

(b) Take the Minkowski mean o these confidence intervals,

(Nr = Ni+ 1)1y |AY; - U(X;), AY] — L(X))

J

4. Calculation of interval estimate: Assuming independence

e For each j = Ny,---, Ny, calculate standard errors of f[(t?)(X)fil and F[(gi) N

J =1
as O'f

; and o7, respectively.

e Calculate a normal approximated confidence interval where ¢,/ is the critical

value and ¢* is the associated

Nr 1/2
7= (N N+ 1>—1( > (o] + U;)z)

Jj=N1

ATT — copp %0, ATT +cqpp 0"
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6.2 Simulation

This section demonstrate how estimators behave under saturation ceteris paribus other com-
plications in real data. We test them under the simulated data generating process Eq. 1,
repeated below. For all ¢t > 2,

t
Yie(g) =Yi1 + Z Ay + 8% Ligoo & 129} + €ig

s=2

We fix a constant § at 2.5 as the treatment effect, which we hope to recover from simu-
lations. A secular trend of Ay between any two consecutive periods. There are 20 treated
countries, 4 treated in every period from year 1 to 5. The study period extends to year 21.
There are additionally 100 control countries that never democratize. All countries, regardless
of treatment status, have the same secular trend; this is necessary for identification. The
countries treated at year 1 have no pre-treatment outcomes.

Baselines at year 1 for the 4 treated groups are two of 90 and two of 50. The control
group has baselines between 10 to 60. Baselines are chosen to mimic the pattern we usually
see with data, which is that several democratizers have more advanced outcomes even before
democratization (therefore, closer to the saturation bound) than their comparable control
countries. The resulting dataset should have 2520 records with 21 time periods.

We attempt to recover S from data generated under this unconstrained process using 8
different estimators: country fixed effects regression (unitFE), year fixed effects regression
(yearFE), two-way fixed effects regression (TWFE), two-way fixed effects estimator with
unit-level time trends (u-TWFE), two-way fixed effects with Tobit correction (TWFE Tobit),
the unconditional estimator of Callaway and Sant’Anna (2021) (did), the baseline-weighted
version of the estimator (did Weighted), our unit-level adaptation of the CS estimator with-
out baseline-weighting (didunit) and with baseline weighting (didunit Weighted). The
coarsened baseline outcome restricted version is named (didunit Restricted).

Then we constrain the outcomes at 100, so that any outcome that was above 100 will now
just be 100. Even with a constant g as in process in Eq. 1, truncation can be interpreted
as inducing a heterogeneous treatment effect as in Eq. 5. The overall effect that we expect
should be the sum of these heterogeneous DiD estimates. For the purpose of this simulation
demonstration, we compare the effects to 2.5, as before, interpreting the data actually coming
from a process Eq. 1, but truncated at 100.

Figure 6.8 demonstrates these results graphically. Under a data generating process where
the outcome is unrestricted the true effect of 2.5 is recovered by all except the unit fixed
effect (FEunit) and time fixed effects (FEtime) regressions. These regressions overestimate

the effect because they do not account for rising secular trends (in the case of FEunit), or
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Figure 6.8: Overall estimates: uncensored data in blue and censored data in red
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Note: The figure depicts the recovered estimates under simulated from a data generating process with
unrestricted outcomes as in Eq. 1 in blue, and from the same process but where the outcome is
restricted above an upper bound of 100 in red. The three panels correspond to their various properties.
Left panel OATT is the estimated effect which should be compared to the true effect 2.5. The center
panel calculates the root mean square error of the estimate in relation to the true effect of 2.5. The
right panel calculates the percentage of times a 95% confidence interval crosses the true effect 2.5.

that treated units have higher baselines (in the case of FEtime).

Under the ceiling restriction, the TWFE estimates a negative effect. The unconditional
version of the Callaway and Sant’Anna (2021) estimator, and its base level also report a nega-
tive estimate. Our unit-level adaptation estimates the exact same effect as the unconditional
Callaway and Sant’Anna (2021) estimator. The unit-level time trends TWFE overestimates
the effect.

The Tobit-TWFE recovers the true effect, and so does our baseline-weighted Callaway
and Sant’Anna (2021) estimator. The reason our baseline-weighted estimator performs better

than the baseline-weighted estimator of Callaway and Sant’Anna (2021) is due to its ability to
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baseline-weight at a country level and excise countries with no baseline comparable controls.
In this particular simulation, the countries with baseline at 90 will be dropped because there
were no comparable controls. The original estimator only drops if the average of the entire
cohort of democratizing countries lack overlap, a much stronger sort of overlap violation.
The Tobit-TWFE has better coverage than our estimator.

It is no surprise that Tobit performs the best under these conditions. However, the
Tobit’s utility is contingent on whether the saturation bound is known or at least empirically
discoverable. For example, had we incorrectly set the Tobit’s censoring bound to be 120, its
estimates would look quite similar to that of the two-way fixed effects.

The other circumstance under which Tobit fails is if the two-way fixed effects model
is biased even without the restriction in its range. This occurs if §(g) differs based on g
(Goodman-Bacon 2021). For the five groups, suppose that the treatment effect declines
overtime starting from 4.93 to 0.93. Because the first g enter already treated a differences-
in-differences desgin should drop this group. The overall effect works out to be about 2.5,
once the different post-treatment lag lengths each period is observed is accounted for (i.e:
3.93%20 +2.93 %19+ 1.93 %18 4+ 0.93 + 17).

In Figure 6.9, Tobit-TWFE performs worse than our proposed unit-level adapted esti-
mator.

In shorter horizons and provided sufficient richness in the set of control countries, our
estimator would do just as well as TWFE-Tobit or better under many of these unfriendly
conditions. If baseline-weighting, the closer the controls’ baselines are to the democratizing
country’s, the less bias there will be. Coarsened exact matching on the baseline can further
reduce these biases. Whether matching or weighting is appropriate is an empirical matter.

Over longer horizons, if the secular trajectory rises continuously, even the control set’s
outcomes saturate. Tobit performs better here as long as the saturation point is discoverable.
Yet, the interpretation of such an estimate assumes the outcome has meaning beyond this

saturation point.
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Figure 6.9: Overall estimates when (g) differs: uncensored data in blue and censored data
in red
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Note: The figure depicts the recovered estimates under simulated from a data generating process with
unrestricted outcomes but has varying 8(g) in blue, and from the same process but where the outcome
is restricted above an upper bound of 100 in red. The three panels correspond to their various
properties. Left panel OATT is the estimated effect which should be compared to the true effect 2.5.
The center panel calculates the root mean square error of the estimate in relation to the true effect of
2.5. The right panel calculates the percentage of times a 95% confidence interval crosses the true effect
2.5.
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